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Background: CLIP
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Strong zero-shot cls. thanks to scaling law
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Figure 2. CLIP is much more efficient at zero-shot transfer PatchCamelyon
than our image caption baseline. Although highly expressive, ED:QSa?tance
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we found that transformer-based language models are relatively
weak at zero-shot ImageNet classification. Here, we see that it

learns 3x slower than a baseline which predicts a bag-of-words Zero-Shot CLIP vs. Linear Probe on ResNet50
(BoW) encoding of the text (Joulin et al., 2016). Swapping the

prediction objective for the contrastive objective of CLIP further Figure 4. Zero-shot CLIP is competitive with a fully super-
improves efficiency another 4x. vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP

classifier outperforms a fully supervised linear classifier fitted on
Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2027 ResNet50 features on 16 datasets, including ImageNet.



Strong robustness to OOD test data
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Figure 7. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model
(dashed line) performs equally well on the ImageNet distribution and on other natural image distributions. Zero-shot CLIP models shrink
this “robustness gap” by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals.
(Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of
the best zero-shot CLIP model is compared with a model that has the same performance on the ImageNet validation set, ResNet101.

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021




Chapter 1 (can be skipped):

Where does CLIP’s
OOD robustness come from?



How to measure OOD robustness: effective robustness

- Let’s first look at effective robustness
- Def. as the slope between ID & OOD acc.
- Expected to be like y=x
- OOD robustness is one important property
of CLIP

- Then how to study it?
- Mainly from a data-centric perceptive
- le, to ablate the datato train CLIP on
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Figure 1: Models pre-trained on LAION
exhibit effective robustness [75] com-
pared to standard models trained on Im-
ageNet. Effective robustness is defined
as movement towards a classifier which
is robust to distribution shift. A classi-
fier is more robust the closer it is to the
y = x line. A classifier on the y = z line
is not affected by the distribution shift.
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Ablate on different web data: YFCC, LAION, WIT, RedCaps.etc.

no much difference between
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Figure 2: Performance of the six pre-training data sources under various distribution shifts.
We find that the behavior—both in terms of accuracy and the slope of the linear trend—of the pre-training
data varies substantially across distribution shifts, with no single data source dominating. Most shifts help
highlight the strengths and weaknesses of different data sources, except for ImageNet-V2, where the linear
trends produced by individual sources are highly correlated with one another.

e YFCC: We experiment with the 15M subset of the YFCC100M dataset [76] that the original CLIP
paper [61] used for dataset ablation studies. The images and captions are collected from Flickr.

LAION [68]: The images and corresponding alt-texts come from web pages collected by Common
Crawl [1] between 2014 and 2021. We randomly select a subset of 15M samples to experiment
with, and ensure that the accompanying NSFW tags of all chosen images are ‘UNLIKELY’.

Conceptual Captions [13]: We use CC-12M for our experiments, which consists of images and
HTML alt-text from an unspecified set of web pages.

RedCaps [20]: This dataset contains 12M examples, obtained from 350 manually curated subreddits
between 2008 and 2020. The subreddits are selected to contain a large number of image posts
that are mostly photographs and not images of people.

Shutterstock: 15M images and captions were crawled from the Shutterstock website in 2021.

WIT [71]: Image-text pairs come from Wikipedia pages. We use reference description as the
source of text data and obtain 5M examples in total after filtering to include only English language
examples.

Appendix A.1 contains an analysis of image and text statistics, as well as randomly selected data
samples from each source.

Evaluation. Similar to Taori et al. [75] and Radford et al. [61], we choose ImageNet as the reference
distribution and evaluate CLIP on four natural distribution shifts derived from ImageNet:

o ImageNet-V2 [65]: A reproduction of the ImageNet validation set closely following the original
dataset creation process.

e ImageNet-R [36]: Renditions (e.g., sculptures, paintings, etc.) for 200 ImageNet classes.
o ImageNet-Sketch [81]: Sketches of ImageNet class objects.

e ObjectNet [6]: A test set of objects in novel backgrounds, rotations, and viewpoints with 113
classes overlapping with ImageNet

Nguyen et al., Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIR NeurlPS 2022



Mixing web datasets do not introduce extra robustness,

but rather a decline
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Figure 3: Combining YFCC and LAION training data in equal ratios produces models with
intermediate robustness. Given a fixed data budget of 15M samples, the linear trend produced by training
CLIP on a YFCC-LAION data mixture, with 7.5M datapoints from each source (cyan line), lies between that
of training CLIP on YFCC (blue line) and LAION (green line) entirely. Even when we increase the total
training set size (30M) and use all data available from both sources (orange line), the same pattern persists.

e YFCC: We experiment with the 15M subset of the YFCC100M dataset [76] that the original CLIP
paper [61] used for dataset ablation studies. The images and captions are collected from Flickr.

LAION [68]: The images and corresponding alt-texts come from web pages collected by Common
Crawl [1] between 2014 and 2021. We randomly select a subset of 15M samples to experiment
with, and ensure that the accompanying NSFW tags of all chosen images are ‘UNLIKELY’.

Conceptual Captions [13]: We use CC-12M for our experiments, which consists of images and
HTML alt-text from an unspecified set of web pages.

RedCaps [20]: This dataset contains 12M examples, obtained from 350 manually curated subreddits
between 2008 and 2020. The subreddits are selected to contain a large number of image posts
that are mostly photographs and not images of people.

Shutterstock: 15M images and captions were crawled from the Shutterstock website in 2021.

WIT [71]: Image-text pairs come from Wikipedia pages. We use reference description as the
source of text data and obtain 5M examples in total after filtering to include only English language
examples.

Appendix A.1 contains an analysis of image and text statistics, as well as randomly selected data
samples from each source.

Evaluation. Similar to Taori et al. [75] and Radford et al. [61], we choose ImageNet as the reference
distribution and evaluate CLIP on four natural distribution shifts derived from ImageNet:

o ImageNet-V2 [65]: A reproduction of the ImageNet validation set closely following the original
dataset creation process.

e ImageNet-R [36]: Renditions (e.g., sculptures, paintings, etc.) for 200 ImageNet classes.
o ImageNet-Sketch [81]: Sketches of ImageNet class objects.

e ObjectNet [6]: A test set of objects in novel backgrounds, rotations, and viewpoints with 113
classes overlapping with ImageNet

Nguyen et al., Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIR NeurlPS 2022



They then looked into the distribution of web data:
i.e., difference between ImageNet and LAION

Robustness under distribution shift
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Figure 1: We compare models trained using different methods and on different datasets,
measuring their robustness on a range of natural distribution shifts (ImageNetV2, ImageNet-R,
ImageNet-Sketch, and ObjectNet). The CLIP models stand out with their consistent performance
in the presence of distribution shift. We find that large gains in effective robustness (improvement
over ImageNet models) only come from varying the training distribution. Language supervision
alone does not cause robustness.

The contrastive loss function

Fang et al., Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP), ICML 2023



For controlled study, they need a captioned version of
ImageNet, and a classification version of YFCC, how?

ImageNet-Captions

caption:

class: @ A Phone Call at Night
payphone Flickr API phone pay phone
telephone

YFCC-Classification

caption:

Muchenley church ; class:

across the ruins of i : S
part of the Abbey. ~ @Pelsearc

Figure 2: Overview of the two main training sets in our experiments. (Top) We introduce
the ImageNet-Captions dataset, where we augment a subset of the ImageNet 2012 training set
images with the corresponding original captions collected from Flickr. (Bottom) We convert the
YFCC image-caption dataset into YFCC-Classification by searching for class labels in the YFCC
captions and then removing the text annotations. These two datasets allows us to evaluate
the impact of language-image training on robustness because we can compare language-image
training with standard classification training on the same set of images.

1. Goingback to where ImageNet
was collected, and retrieve
corresponding metadata,
including original captions.

2. Use substring matching on YFCC

captions to get their labels
- There can be better ways, but
this was good enough

Title: Reflected Duck Title: SILENT ROCKER Title: A Phone Call at Night
Description: Description: MOSE’S MOTHER HAS Description: I might have a
Tags: lake, water, bird [6 tags LEFT THE BuILDING [10 words thing with telephones [174
omitted] omitted] words omitted]
Tags: rockingchair, rock, chair Tags: phone, telephone,
[2 tags omitted] blackandwhite [7 tags omitted]

Figure 3: Three sample images from ImageNet-Captions. Their respective ImageNet labels are:
drake, rocking chair, payphone.

Fang et al., Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP), ICML 2023



For OOD robustness, it doesn’t matter if language is used
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Figure 4: On most natural distribution shifts, models trained with language information from
ImageNet-Captions follow the same trend as models trained without it. Neither comes close to

achieving the robustness of OpenAI’s CLIP models.

Fang et al., Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP), ICML 2023



A classification model can be as robust when trained on
web data (YFCC in this case)

Robustness under distribution shift
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Table 3: Comparing CLIP training with (language model free) classification models on YFCC-
15M. All experiments use a ViT-B/16 backbone. The CLIP results are from Mu et al. [24].
Image-only contrastive learning followed by a simple text matching stage for classification nearly
matches the performance of CLIP with a full language model.

Training style ImageNet Avg OOD

CLIP 37.9 19.9
SimCLR — Classification 35.7 18.8

Figure 1: We compare models trained using different methods and on different datasets,
measuring their robustness on a range of natural distribution shifts (ImageNetV2, ImageNet-R,
ImageNet-Sketch, and ObjectNet). The CLIP models stand out with their consistent performance
in the presence of distribution shift. We find that large gains in effective robustness (improvement
over ImageNet models) only come from varying the training distribution. Language supervision

alone does not cause robustness.

Fang et al., Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP), ICML 2023



Another German team then asks: does CLIP’s
generalization come from info leak (test € train)?
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points from the larger dataset that lie within this hull (center). We end up with a corrected large
dataset replicating the similarity gap of the small one (right).
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Mayilvahanan et al., Does CLIP’s generalization performance mainly stem from high train-test similarity?, ICLR 2024



Another German team then asks: does CLIP’s
generalization come from info leak (test € train)?
TL:DR: No.

Top-1 Accuracy

Dataset Size Val Sketch A R V2 ON

OpenAl (Radford et al., 2021) 400000000 63.38 42.32 31.44 69.24 5596 44.14
L-400M (Schuhmann et al., 2021) 413000000 62.94 49.39 21.64 73.48 55.14 43.94
L-200M 199824274 62.12 48.61 21.68 72.63 54.16 44.80
L-200M + IN-Train 200966589 68.66 50.21 2333 729 59.7 43.99
— val-pruned —377340 68.62 49.58 2347 7274 59.47 45.08
— sketch-pruned -8342783 68.34 44778 227 69.35 59.52 44.12
— a-pruned —138852 68.85 50.25 2299 7244 60.05 44.43
— r-pruned -5735749 68.71 4692 2344 6948 59.6 45.08
— v2-pruned -274325 68.79 5045 23.19 72.58 59.84 45.33
— objectnet-pruned -266025 68.75 50.14 2270 72.82 59.37 43.73
— combined-pruned -12352759 68.05 44.12 22.15 67.88 58.61 44.39

Mayilvahanan et al., Does CLIP’s generalization performance mainly stem from high train-test similarity?, ICLR 2024



Chapter 2:

How does imbalance in
pre-training data interact with
model performance?



What makes ImageNet look
unlike LAION? | =
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Shirali et al., What Makes ImageNet Look Unlike LAION, arXiv 2023



Community efforts in rebalancing data curation:
MetaCLIP re-implements OpenAI’s WIT-400M
by retrieving 500k diverse queries

CLIP’s WIT400M is curated with an information retrieval method, quoting (Radford et al., 2021):

(14
To address this, we constructed a new dataset of 400 million (image, o
text) pairs collected from a variety of publicly available sources on the In-
ternet. To attempt to cover as broad a set of visual concepts as possible,
we search for (image, text) pairs as part of the construction process whose
text includes one of a set of 500,000 queries We approximately class bal-
ance the results by including up to 20,000 (image, text) pairs per query.
29

t=20k (400M)

Xu et al., Demystifying CLIP Data (MetaCLIP), ICLR 2024 Metadata Entries Sorted by Counts



Community efforts in rebalancing data curation:
Deduplication also matters for DINOv2
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Oquab et al., DINOv2: Learning Robust Visual Features without Supervision, TMLR 2024




Looking into the concept distribution of web datasets
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Wen et al., What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights, NeurlPS 2024
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A shared long-tail, and a scaling law against it
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Figure 1: Per-class statistics of image-text datasets and models trained on top. (a) A highly imbalanced
class distribution is shared across datasets.!(b) Compared to supervised learning (% SL), CLIP’s
performance (measured by e accuracy) is less biased by data frequency, and the classifier is notably
uncorrelated (measured by model’s number of e prediction per class). Besides, the correlation
narrows as data scales up. Both aspects indicate implicit re-balancing mechanisms exist in CLIP.

Wen et al., What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights, NeurlPS 2024




A data-centric toolbox for controlled ablations

Image from ImageNet ImageNet-Captions IS TRy
: A linear scale
Class: payphone  URL: flickr.com/... > & ill;i ( )

Title: A Phone Call at Night
Desc.: | might have a thing with telephones...
Tags: phone, telephone, black and white, ...

5 Retrieve metadata
~ with Flickr API

LAIONet Class frequency
Caption: Crane loading container ship, by | (linear scale)
€ ImageNet € ImageNet ¢ ImageNet

Def.: “crane, which is...” “crane (bird) is...” “container ship is....” —

Filter b P 3.26M images
Class: crane, container ship € if GaittiiEs R A 943 classes
similarity of CLIP text encoder

Figure 2: Curation process and distribution of datasets used in our controlled study. Top: IN-Caps [26]
augments train images of ImageNet with texts by querying Flickr with image URLs. The texts include
title, description, and tags. Bottom: LAIONet [74] is a filtered subset of LAION-400M [70], obtained
by matching ImageNet classes with captions and filtering by CLIP text encoder for disambiguation.

Wen et al., What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights, NeurlPS 2024




Green dots: (Descriptive) language as supervision signal
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Figure 3: Results on IN-Caps about e text descriptiveness and % vocabulary size. 1) Increasing e text
descriptiveness improves both robustness (a) and discriminability (b) of CLIP, but the tendency varies
if using - less descriptive (template-based) supervision. 2) The gap between SL and CLIP (a) implies
CLIP re-balances predictions, which is replicable by % subsampling the vocabulary SL trains with.
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Recall CLIP loss (InfoNCE, contrastive loss)

|
(1) Contrastive pre-{raining Only a subset of all classes!

# i ResNet or Vision Transformer
# CBOW or Text Transformer
Pepper the - # minibatch|of aligned images
aussie pup Text # T[n, 1] - |minibatch|of aligned texts
Encoder # W_i[d_i, d_e] - "Iearned proj of image to embed
Y A 4 A4 A4 # W_t[d_t, d_e] - learned proj of text to embed
1, T, Ty Tn # t - learned temperature parameter
# extract feature representations of each modality
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ncoden # scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
> I InTs | In'To | I T et labels = np.arange(n)
N NOL| N2 N il loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021




Blue crosses: Dynamic classification (using subsampled
vocabulary) as pretext task
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Figure 3: Results on IN-Caps about e text descriptiveness and % vocabulary size. 1) Increasing e text
descriptiveness improves both robustness (a) and discriminability (b) of CLIP, but the tendency varies
if using - less descriptive (template-based) supervision. 2) The gap between SL and CLIP (a) implies
CLIP re-balances predictions, which is replicable by % subsampling the vocabulary SL trains with.

Let SL models only to
discriminate from a
(dynamic) subset of all
classes in each forward.

This techniqueis also
called “federated loss” in
open-vocabulary object
detection.

We find it can effectively
re-balance learning
signals.
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Data factors (data imbalance “F . diversity, and distribution shift)
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Figure 4: Results on LAIONet about data distribution (level of data imbalance, distribution shift, and
data diversity). 1) Extreme data imbalance makes models more prone to bias (last column vs. others).
2) Distribution shift (ee vs. mm, last column) harms discriminability but could improve robustness if
pre-trained text head is used. 3) Higher data diversity (smaller threshold) also improves robustness.
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2) Distribution shift (ee vs. mm, last column) harms discriminability but could improve robustness if
pre-trained text head is used. 3) Higher data diversity (smaller threshold) also improves robustness.
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Data scaling (also achievable via CLIP language pre-training)
Pre-trained knowledge help preserve intra-class variation
while not harming inter-class margins
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Figure 5: Results on LAIONet subsets about data scale and text encoder. 1) CLIP’s discriminability
(a) and robustness (b) co-improve as data scales up, and can be boosted by pre-trained heads. 2) A
frozen head helps CLIP preserve intra-class variation (c) while not harming margins (d), which can
be lost if fine-tuned. It is also unattainable by SL even using the same head. 3) Language pre-training
using CLIP is more favorable for image-text tasks than pure language modeling (e.g., ROBERTa [48]).
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Chapter 3:

Can we transfer these insights to
other ML communities?



SL under extreme long-tail (or open-world recognition)
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Figure 8: An extreme case: we train SL models on IN-Caps variants that have tail classes trimmed
to only one shot (a & b) or even zero shot (¢ & d), and evaluate the accuracy on the tail and other
classes. ® CLIP with a frozen pre-trained text encoder shows superior generalization, which can be
acquired by a ¥ SL model with % fixed class prototypes from CLIP and % vocabulary subsampling.

LT and OW commonly use
pre-trained CLIP as is.

We find voc. sub. is
necessary to acquire CLIP
knowledge in downstream
tasks.
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SL under extreme long-tail (or open-world recognition)
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Figure 9: A case study of SL under the zero-shot tail setting. (a) SL models seek maximal margins
between classifiers, and tail prototypes collapse together. Instead, CLIP has a healthier structure. (b)
Using CLIP head solely is less effective, and voc. subsampling is needed for CLIP-like generalization.

LT and OW commonly use
pre-trained CLIP as is.

We find voc. sub. is
necessary to acquire CLIP
knowledge in downstream
tasks.

CLIP head is good, but
CLIP-like loss is also
needed in downstream.
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SSL (DINO) on uncurated web data vs ImageNet

Pseudo labels here are

DINO variants on LAIONet vs. vanilla DINO on ImageNet high imbalanced!
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Figure 10: Transfer learning results of DINO variants pre-trained on LAIONet vs. vanilla DINO e

trained on ImageNet. Extreme data imbalance makes LAIONet much harder for DINO to learn
transferrable representations. The m vocabulary subsampling strategy effectively helps m DINO
alleviate such defects and generally match ImageNet-pretrained performance.

Caron et al., Emerging properties in self-supervised vision transformers, ICCV 2021
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65536 prototypes of DINO are far from good utilization

Table 1: Number of unique prototypes in existing models

with € = 0.025 (default pre-training: ImageNet-1K, *: iNat- 10000
2018, *x: ImageNet-22K) Regularization
— ' = 8000 -| = KoLeo-proto
Bk Vethod Imttlathzed Uiu?ue T’ B Kolcodata
ackbone etho prototypes  prototypes o & W None (baseline)
(K) (M) S & G000 -
VIT-S/16  DINO 65536 1078 R
ViT-B/16 DINO 65536 804 —g o
ViT-S/16 DINO-vMF 65536 1157 2 8. 4000 -
ViT-B/16 DINO-vMF 65536 939 Z o
ViT-S/16  iBOT 8192 3242 g.
ViT-B/16  iBOT 8192 875 'S 2000 o
ViT-B/16 iBOT-vMF 8192 1170 =
VIiT-L/16  iBOT 8192 969
ViT-B/16  iBOT** 8192 1241 0 -
VIiT-L/16  iBOT** 8192 1037 2048 4096 8192 10240
ViT-S/16 MSN* 8142 3363 oo
VESHE  PUSK® %147 3005 Number of initialized prototypes (K)

Govindarajan et al., On Partial Prototype Collapse in the DINO Family of Self-Supervised Methods, ICLR 2024 Submission
S



Chapter 4: Discussions



CLIP’s per-class accs are still biased, but weakly
correlated to data distribution,

and debiasing techniques in LT learning can be applied

901 Model Head Medium Tail All

80 4
g Zero-Shot 78.0 69.8 57.2 68.3
§ 70 4 v
- Fine-Tuned 83.6 83.0 77.3 81.3
§ 604 | = Estimated label distribution —— Zero-Shot

T Fine-Tune WISE-FT  [85.3 (+1.7) 83.7 (+0.7) 76.4 (-0.9) 81.8 (+0.5)
50 —— WISE-FT
i i ~—— GLA (ours]
" . il g ), | o GLA (ours) 85.2(+1.6) 84.3 (+1.3) 78.8 (+1.5) 828 (+1.5)
0 200 400 600 800 1000 Zoomed in results
Sorted class index
(a) Per class accuracy of different models on ImageNet (b) Beak-down performance of different models on ImageNet
X109 %1072 x102

24 oA s
E e H
g, 2 3
& § 821
g T 2
§ 11 % g = = —_—
2 w 2

T 200 400 600 800 1000 i 505 W00 . = 650

Sorted class index Sorted class index Sorted class index
(a) Averaged outputs of zero-shot model (b) Estimated label distribution q (c) Averaged outputs of debiased zero-shot model

Wang et al., Debiased learning from naturally imbalanced pseudo-labels., CVPR 2022
Zhu et al., Generalized logit adjustment: Calibrating fine-tuned models by removing label bias in foundation models, NeurlPS 2023



Looking at the overall trend, weak correlation can
still be spotted; still, much better than SL

ImageNet accuracy (top-1, %)

ImageNet accuracy (top-1, %)
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Can we make a better estimation of concept frequency?
There are works using LLM and/or VLM (GLIP)

Concept: tiger

Il Definition: Panthera tigris, a large, striped Asian cat

Step 1: enumerate concept synonyms Step 2: filter out irrelevant captions

{ ; | ‘What are some common ways Does {concept} in the {caption} ( z l
of referring to tiger? refer to {definition}?
A Bengal tiger in the forest O Concept Acquisition
l@ ; :gQZh ti —y|Pretraining |_y Panthera tigris Stock Phot [ (V] @J frocess o concepts
) anthera tigris Captions anthera tigris Stock Photo L : : E Text-Index
LLM “h e i LLM |

tiger shark swimming in water Q

ﬁ

Concept
Figure 2. Using large language models (LLMs) to estimate con-
cept frequency in a VLM’s pretraining dataset. We conduct
the frequency estimation using publicly available LAION [37]
datasets. First, since a visual concept can be expressed in various
ways, we ask an LLM (e.g., ChatGPT [31]) to enumerate all its

synonyms to search for potentially relevant pretraining texts. For : we’:ﬁ;“f-
example, for t iger, we retrieve all captions that contain not only Generation ‘\\\ /{f

wearing a hat
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“tiger” but also its synonyms such as “Panthera tigris”. = @ o
Second, we filter out irrelevant captions that do not refer to the tar- Coneept Extraction
get concept by its definition. For example, although “tiger shark
swimming in water” contains “tiger”, it actually refers to a type
of shark, not the animal tiger as defined by “Panthera tigris,

a large, striped Asian cat”. We conduct the filtering process by

querying an LLM Llama-2 [42] (cf. Section 3).

Parashar et al., The Neglected Tails of Vision-Language Models, CVPR 2024
Udandarao et al., No "Zero-Shot" Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance, arXiv 2024

Concept Frequency Estimation




Comparing to more advanced estimations, our
results are mostly coherent
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Figure 14: Correlation between class frequency statistics of our estimations and concurrent results of

Parashar et al. [61]. There is an agreement on most concept sets except DTD [15], which is about
descriptive textures and can be more semantically ambiguous [61].
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Beyond 1000 ImageNet classes, CLIP is still robust
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Figure 12: Correlation statistics of CLIP evaluated on broader sets of concepts. Models pre-trained
at scale (> 400M) remain robust on most datasets except fine-trained (e.g., CUB and Flowers)
and domain-specific ones (e.g., EuroSAT). These data might be relatively rare on the web or have
significant gaps with other data, thus hard to benefit from scaling or generalization from existing data.

Wen et al., What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights, NeurlPS 2024



Why discussing CLIP in 2024?

FROMAGe, BLIP-2, MiniGPT-4, LLaVA.,
Instruct-BLIP still base on frozen CLIP.

Pre-trained image encoder and LLM. For the frozen im-
age encoder, we explore two state-of-the-art pre-trained
vision transformer models: (1) ViT-L/14 from CLIP (Rad-
ford et al., 2021) and (2) ViT-G/14 from EVA-CLIP (Fang
et al., 2022). We remove the last layer of the ViT and
uses the second last layer’s output features, which leads
to slightly better performance. For the frozen language
model, we explore the unsupervised-trained OPT model
family (Zhang et al., 2022) for decoder-based LLMs, and
the instruction-trained FlanT5 model family (Chung et al.,
2022) for encoder-decoder-based LLMs.

Architecture. We implement InstructBLIP in LAVIS library [ ' ©]. Thanks to the flexibility enabled
by the modular architectural design of BLIP-2, we can quickly adapt the model to incorporate various
LLMs. In our experiments, we adopt four variations of BLIP-2 with the same image encoder (ViT-
g/14 [10]) but different frozen LLMs, including FlanT5-XL (3B), FlanT5-XXL (11B), Vicuna-7B
and Vicuna-13B. FlanT5 [ /] is an instruction-tuned model based on the encoder-decoder Transformer
T5 [*7]. Vicuna [”], on the other hand, is a recently released decoder-only Transformer instruction-
tuned from LLaMA [40]. During vision-language instruction tuning, we initialize the model from
pre-trained BLIP-2 checkpoints, and only finetune the parameters of Q-Former while keeping both
the image encoder and the LLM frozen. Since the original BLIP-2 models do not include Vicuna as
LLMs, we perform pre-training with Vicuna following the same procedure as BLIP-2.

We use the publicly available OPT model (Zhang et al.,
2022) with 6.7B parameters as our LLM. Past work indi-
cates that findings at the 6.7B scale are likely to generalize to
larger model sizes (Dettmers et al., 2022), and large enough
to exhibit the few-shot and in-context learning abilities that
we are interested in (Radford et al., 2019). For the visual
model, we use a pretrained CLIP ViT-L/14 model (Radford
et al., 2021) for its ability to produce strong visual represen-
tations for vision-and-language tasks (Merullo et al., 2022).

To substantiate our hypothesis, we present a novel model named MiniGPT-4. It utilizes an advanced
large language model (LLM), Vicuna [8], which is built upon LLaMA [32] and reported to achieve
90% of ChatGPT’s quality as per GPT-4’s evaluation, as the language decoder. In terms of visual
perception, we employ the same pretrained vision component of BLIP-2 [16] that consists of a
ViT-G/14 from EVA-CLIP [13] and a Q-Former. MiniGPT-4 adds a single projection layer to align
the encoded visual features with the Vicuna language model and freezes all the other vision and
language components. MiniGPT-4 is initially trained for 20k steps using a batch size of 256 on 4
A100 GPUs, leveraging a combined dataset that includes images from LAION [26], Conceptual
Captions [5, 27], and SBU [20] to align visual features with the Vicuna language model. However,
simply aligning the visual features with the LLM is insufficient to train high-performing model
with visual conversation abilities like a chatbot, and the noises underlying the raw image-text pairs
may result in incoherent language output. Therefore, we collect another 3,500 high-quality aligned
image-text pairs to further fine-tune the model with a designed conversational template in order to
improve the naturalness of the generated language and its usability.

* Large multimodal models. We develop a large multimodal model (LMM), by connecting the
open-set visual encoder of CLIP [©] with the language decoder LLaMA, and fine-tuning them
end-to-end on our generated instructional vision-language data. Our empirical study validates
the effectiveness of using generated data for LMM instruction-tuning, and suggests practical
tips for building a general-purpose instruction-following visual agent. With GPT-4, we achieve
state-of-the-art performance on the Science QA [*/] multimodal reasoning dataset.



Performance of LLM can be easily poisoned by overwhelming
“junk data”; their fix is allow the LLM to detect bad data

scaling laws (pretrain data of mixed qualities)

*  “Junk” data significantly harm LLM’s knowledge capacity on good data (sometimes by 20x times!) — Result 10
e.g. common crawls, internet “junks” e.g. Wikipedia
* repetitive knowledge does not harm —Result 11
\ illustration
~ 1/8 good data 7/8 training tokens from “junk” data
{i y Ty ﬂ
train without junk train with junk for 100 exposures
for 100 exposures % train with junk for 300 exposures

L

simple fix!

— Result 12

oo 10x better! A0 3x better!

 add domain name (e.g., “wikipedia.org”) at front of all pretrain data paragraphs [] data [] data [] data
LLMs can automatically detect domains rich in high-quality knowledge and prioritize learning from them

Allen-Zhu et al., Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws, arXiv 2024




Performance of VLMs are also apparently biased
by VL data; their fix is FT on balanced cls. data
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Figure 3: Analysis of VLMs from the data perspective. We study the relation between the ImageNet
class frequency in the VLM training data and the VLM'’s classification performance on those classes.
A strong correlation is observed, indicating that data determines VLM classification performance.

Zhang et al., Why are Visually-Grounded Language Models Bad at Image Classification?, arXiv 2024
S



Takeaways

Data matters
o Good data always helps
Datais not the silver bullet
o Re-balancing mechanisms of
CLIP is one key factor of it to
benefit from data scaling

We still do not fully understand
contrastive models
o And they still can outperform
generative models
Controlled experiment matters for a
study




Thanks!

Xin Wen, HKU
16 Aug, 2024




