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Why scene-centric pre-training

● Uncurated, easier data collection, less human labor
○ Unlabeled ImageNet is not really unlabeled

● Closer to the downstream data distribution (det & seg)
● More information in one image (multiple objs, complex layout)

Van Gansbeke, Wouter, et al., Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, NeurIPS 2021.



Scene-centric pre-training requires more than 
instance discrimination

Seems good for object-centric images Scene-centric images should not be 
simply treated as a single feature vector!



Image-level, pixel-level, and object-level contrastive learning



Fantastic objects and where to find them (without supervision)?



On object discovery: the Slot Attention mechanism

# simplified slot attention module
slots = slots_mu + exp(slots_log_sigma)*normal([N, num_slots, slot_size])
inputs = LayerNorm(inputs)
for t in range(T) # loop == multi-layer with weight-sharing
    attn = Softmax(dot(k(inputs), q(slots).T), axis='slots')
    slots = WeightedMean(weights=attn + 1e-6, values=v(inputs))
    slots += MLP(LayerNorm(slots))

# simplified transformer decoder layer
slots += LayerNorm(self_attn(slots, slots, slots)) # self-attention

attn = Softmax(dot(k(inputs), q(slots).T), axis='inputs') # cross-attention
slots = WeightedSum(weights=attn + 1e-6, values=v(inputs)) 
slots += LayerNorm(slots)

slots += LayerNorm(MLP(slots))
return slots

Slot attention introduces competing between queries

Transformer decoders’ queries are independent to each other

Locatello, Francesco, et al., Object-Centric Learning with Slot Attention, NeurIPS 2020.



Slot Attention works well on toy data with reconstruction…

Locatello, Francesco, et al., Object-Centric Learning with Slot Attention, NeurIPS 2020.



And also on real-world data if motion or depth is available…

[1] Yang, Charig, et al., Self-Supervised Video Object Segmentation by Motion Grouping, ICCV 2021.
[2] Elsayed, Gamaleldin F., et al., SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos, NeurIPS 2022



And…, what about real-world images?

● No “cheating” cues like motion or depth
● Reconstruction-based paradigm no longer work

○ Though it worked well on toy data
○ The training cost is also not acceptable

● Contrastive learning faces ambiguity in the learning objective
○ The key is to define an objective that forces the emergence of objectness
○ Matching the slots procured from two views is hard

■ Since the representations are premature
○ The best we reached in this path is a good foreground-background 

discriminator (by the end of my undergrad thesis)



Philosophy shift: from bottom-up to top-down

● Bottom-up object discovery
○ Objects are directly induced from a 

single image
○ The cues for objectness are mostly 

low-level
■ E.g., motion, depth, 

reconstruction
○ Do not generalize to the real-world

● Top-down (semantic) object discovery
○ First learn semantic prototypes from 

the whole dataset
■ Each prototype can represent a 

semantic class (e.g., cat, dog)
○ Then assign a nearest-neighbor 

prototype to each pixel 
(pseudo-labeling)

○ Pixels with the same pseudo-label 
forms a group (object)

○ The cues for objectness comes from 
high-level semantics



Towards semantic prototypes: deep clustering

[1] Caron, Mathilde, et al, Deep Clustering for Unsupervised Learning of Visual Features, ECCV 2018.
[2] Caron, Mathilde, et al, Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, NeurIPS 2020.
[3] Caron, Mathilde, et al. Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021.

● Key insight
○ Two augmented views of the 

same image should have the 
same cluster assignments 
(soft pseudo-labels)

● Key problem
○ Pseudo-labeling

■ K-means
■ Sinkhorn-Knopp
■ Self-distillation

○ Avoiding collapse
■ Stop-gradient
■ Centering & sharpening 

on the predictions



Deep clustering on pixels: unsupervised semantic seg.

Cho, Jang Hyun, et al., PiCIE: Unsupervised Semantic Segmentation Using Invariance and Equivariance in Clustering, CVPR 2021.

Same 
location



Semantic grouping with pixel-level deep clustering

● Intuition: A semantic meaningful 
grouping should be invariant to data 
augmentations

● Consistency: Pixels that lie in the 
same location should have similar 
assignment scores w.r.t. the same set 
of cluster centers (prototypes)

● Avoid trivial solution: The prototypes 
should be different from each other to 
ensure that the learned 
representations are discriminative

Overlapping region

Overlapping region



Group-level representation learning by contrasting slots

● MoCo v3-like contrastive learning 
objective applied to slots/groups

● Pull force: Maximize the similarity 
between different views of the 
same slot

● Push force: Minimize the similarity 
between slots from another view 
with different semantics and all 
slots from other images.



Together: solving segmentation & representation jointly

● Based on a shared pixel embedding function, the model learns to classify pixels into groups according to their feature 
similarity in a pixel-level deep clustering fashion.

● The model produces group-level feature vectors (slots) through attentive pooling over the feature maps, and further 
performs group-level contrastive learning.



Results: new SOTA in scene-centric pre-training



Eqv. Performance to ImageNet with ⅕ data



Also strong compatibility in object-centric pre-training



Ablation study



Understanding the semantic grouping ability:
unsupervised semantic segmentation



Understanding the semantic grouping ability:
nearest neighbor visualization



On the emergence of objectness…

● Why the prototypes bind to 
meaningful concepts?

● We adopts three priors:
○ Prior 1: geometric-covariance and 

photometric-invariance
○ Prior 2: small prototype number
○ Prior 3: meaningful grouping

■ i.e., avoiding collapse
● Given these constraints, optimize the 

feature space and the prototypes
● Semantic proto. is the only solution

● Concerning granularity
○ Depend on the prototype number and 

dataset distribution
● It can bias to occupying categories

○ e.g., the model also discovers 
human parts and human-related 
activities

○ While for other animals, one 
prototype for one general species is 
enough



Additional ablation studies



Additional visualization results: human-related



Pre-training with autonomous driving data?

● Setting
○ Train on BDD100K, then transfer to 

Cityscapes
● Results

○ Not as good as COCO-pre-train
○ Yet still beats MoCo v2
○ BDD100K is long-tailed, and the 

images are also less discriminative
○
○ Object-centric pre-training on such 

data is still challenging for us



Statistics about the slots

● How many slots are active on 
average for each image?

○ Roughly, 7 slots are active on average 
for one image after convergence.

● How often is one slot active over 
the whole dataset?

○ Top 5: tree (376), sky (337), streetside 
car (327), building exterior wall (313), 
and indoor wall (307)

○ Bottom 5:  skateboarder (44), grassland 
(45), train (56), luggage (57), and 
airplane (57)



Summary

1. We show that the decomposition of natural scenes (semantic grouping) can 
be done in a learnable fashion and jointly optimized with the representations 
from scratch.

2. We demonstrate that semantic grouping can bring object-centric 
representation learning to large-scale real-world scenarios.

3. Combining semantic grouping and representation learning, we unleash the 
potential of scene-centric pre-training, largely close its gap with object-centric 
pre-training and achieve state-of-the-art results in various downstream tasks.
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