

Self-Supervised Visual Representation Learning with Semantic Grouping

Xin Wen¹, Bingchen Zhao^{2, 3}, Anlin Zheng^{1, 4}, Xiangyu Zhang⁴, and Xiaojuan Qi¹ ¹The University of Hong Kong ²University of Edinburgh ³LunarAI ⁴MEGVII Technology

Why scene-centric pre-training

- Uncurated, easier data collection, less human labor
 - Unlabeled ImageNet is not really unlabeled
- Closer to the downstream data distribution (det & seg)
- More information in one image (multiple objs, complex layout)

Table 1: Overview of the training datasets. We sample a uniform and long-tailed (LT) subset of 118K images from ImageNet. On OpenImages, we sample a random subset of 118K images. The complete train splits are used for COCO and BDD100K. The figure shows some examples.

Pretrain Data	#Imgs	#Obj/Img	Uniform	Discriminative
ImageNet-118K [12]	118 K	1.7	\checkmark	\checkmark
ImageNet-118K-LT [12]	118 K	1.7	×	\checkmark
COCO [31]	118 K	7.3	×	\checkmark
OpenImages-118K [28]	118 K	8.4	×	\checkmark
BDD100K [52]	90 K	-	×	×

Van Gansbeke, Wouter, et al., Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, NeurIPS 2021.

Scene-centric pre-training requires more than instance discrimination

Seems good for object-centric images

Scene-centric images should not be simply treated as a single feature vector!

Image-level, pixel-level, and object-level contrastive learning

Fantastic objects and where to find them (without supervision)?

On object discovery: the Slot Attention mechanism

(a) Slot Attention module.

Slot attention introduces **competing** between queries

Transformer decoders' queries are **independent** to each other

Slot Attention works well on toy data with reconstruction...

(a) Decomposition across datasets.

(c) Reconstructions per iteration.

Locatello, Francesco, et al., Object-Centric Learning with Slot Attention, NeurIPS 2020.

And also on real-world data if **motion** or **depth** is available...

Yang, Charig, et al., Self-Supervised Video Object Segmentation by Motion Grouping, ICCV 2021.
Elsayed, Gamaleldin F., et al., SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos, NeurIPS 2022

And..., what about real-world images?

- No "cheating" cues like motion or depth
- Reconstruction-based paradigm no longer work
 - Though it worked well on toy data
 - The training cost is also not acceptable
- Contrastive learning faces ambiguity in the learning objective
 - The key is to define an objective that forces the emergence of objectness
 - Matching the slots procured from two views is hard
 - Since the representations are premature
 - The best we reached in this path is a good foreground-background discriminator (by the end of my undergrad thesis)

Philosophy shift: from bottom-up to top-down

- Bottom-up object discovery
 - Objects are directly induced from a single image
 - The cues for objectness are mostly *low-level*
 - E.g., motion, depth, reconstruction
 - \circ Do not generalize to the real-world

- Top-down (semantic) object discovery
 - First learn semantic prototypes from the *whole dataset*
 - Each prototype can represent a semantic class (e.g., cat, dog)
 - Then assign a nearest-neighbor prototype to each pixel (pseudo-labeling)
 - Pixels with the same pseudo-label forms a group (object)
 - The cues for objectness comes from *high-level* semantics

Towards semantic prototypes: deep clustering

- Key insight
 - Two augmented views of the same image should have the same cluster assignments (soft pseudo-labels)
- Key problem
 - Pseudo-labeling
 - K-means
 - Sinkhorn-Knopp
 - Self-distillation
 - Avoiding collapse
 - Stop-gradient
 - Centering & sharpening on the predictions

- [1] Caron, Mathilde, et al, Deep Clustering for Unsupervised Learning of Visual Features, ECCV 2018.
- [2] Caron, Mathilde, et al, Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, NeurIPS 2020.
- [3] Caron, Mathilde, et al. Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021.

Deep clustering on pixels: unsupervised semantic seg.

Cho, Jang Hyun, et al., PiCIE: Unsupervised Semantic Segmentation Using Invariance and Equivariance in Clustering, CVPR 2021.

Semantic grouping with pixel-level deep clustering

- Intuition: A semantic meaningful grouping should be invariant to data augmentations
- **Consistency**: Pixels that lie in the same location should have similar assignment scores w.r.t. the same set of cluster centers (prototypes)
- Avoid trivial solution: The prototypes should be different from each other to ensure that the learned representations are discriminative

Group-level representation learning by contrasting slots

- MoCo v3-like contrastive learning objective applied to slots/groups
- **Pull force**: Maximize the similarity between different views of the same slot
- **Push force**: Minimize the similarity between slots from another view with different semantics and all slots from other images.

Together: solving segmentation & representation jointly

- Based on a shared pixel embedding function, the model learns to classify pixels into groups according to their feature similarity in a pixel-level deep clustering fashion.
- The model produces group-level feature vectors (slots) through attentive pooling over the feature maps, and further performs group-level contrastive learning.

Results: new SOTA in scene-centric pre-training

Table 2: **Main transfer results with COCO pre-training.** We report the results in COCO [48] object detection, COCO instance segmentation, and semantic segmentation in Cityscapes [13], PASCAL VOC [20] and ADE20K [86]. Compared with other image-, pixel-, and object-level self-supervised learning methods, our method shows consistent improvements over different tasks without leveraging multi-crop [6] and objectness priors. (†: re-impl. w/ official weights; ‡: full re-impl.)

Method	Epochs	Multi	Obj.	COO	CO dete	ction	COCO	O segme	entation	Sema	ntic seg.	(mIoU)
	- r	crop	Prior	AP ^b	AP_{50}^b	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m	City.	VOC	ADE
random init.	-	X	×	32.8	50.9	35.3	29.9	47.9	32.0	65.3	39.5	29.4
Image-level app	roaches											
MoCo v2 [‡] [9]	800	×	×	38.5	58.1	42.1	34.8	55.3	37.3	73.8	69.2	36.2
Revisit. [†] [63]	800	1	×	40.1	60.2	43.6	36.3	57.3	38.9	75.3	70.6	37.0
Pixel-level appro	oaches											
Self-EMD [49]	800	X	X	39.3	60.1	42.8	-	-	-	-	-	-
DenseCL [†] [68]	800	×	×	39.6	59.3	43.3	35.7	56.5	38.4	75.8	71.6	37.1
PixPro [‡] [75]	800	×	×	40.5	60.5	44.0	36.6	57.8	39.0	75.2	72.0	38.3
Object / Group-l	evel appr	oaches										
DetCon [†] [35]	1000	×	1	39.8	59.5	43.5	35.9	56.4	38.7	76.1	70.2	38.1
ORL [†] [74]	800	1	1	40.3	60.2	44.4	36.3	57.3	38.9	75.6	70.9	36.7
Ours (SlotCon)	800	×	×	41.0	61.1	45.0	37.0	58.3	39.8	76.2	71.6	39.0

Eqv. Performance to ImageNet with % data

Table 3: **Pushing the limit of scene-centric pre-training.** Our method further sees a notable gain in all tasks with extended COCO+ data, showing the great potential of scene-centric pre-training.

Method	Dataset	Epochs	CO	CO dete	ction	COCO	O segme	ntation	Semar	ntic seg.	(mIoU)
	2 414500	Lpoons	AP ^b	AP_{50}^b	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m	City.	VOC	ADE
SlotCon	COCO	800	41.0	61.1	45.0	37.0	58.3	39.8	76.2	71.6	39.0
SlotCon	ImageNet	100	41.4	61.6	45.6	37.2	58.5	39.9	75.4	73.1	38.6
SlotCon	ImageNet	200	41.8	62.2	45.7	37.8	59.1	40.7	76.3	75.0	38.8
ORL [74]	COCO+	800	40.6	60.8	44.5	36.7	57.9	39.3	-	-	-
SlotCon	COCO+	800	41.8	62.2	45.8	37.8	59.4	40.6	76.5	73.9	39.2

Table 1: Details of the datasets used for pre-training.

Dateset	#Img.	#Obj./Img.	#Class
ImageNet-1K [15]	1.28M	1.7	1000
COCO [48]	118K	7.3	80
COCO+ [48]	241K	N/A	N/A

Also strong compatibility in object-centric pre-training

Table 4: **Main transfer results with ImageNet-1K pre-training.** Our method is also compatible with object-centric data and shows consistent improvements over different tasks without using FPN [47] and objectness priors. (†: re-impl. w/ official weights; ‡: full re-impl.)

Method	Epochs	w/ Obj.		CO	COCO detection			COCO segmentation			Semantic seg. (mIoU)		
	-	FPN	Prior	AP^b	AP_{50}^{b}	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m	City.	VOC	ADE	
random init.	-	×	×	32.8	50.9	35.3	29.9	47.9	32.0	65.3	39.5	29.4	
supervised	100	X	×	39.7	59.5	43.3	35.9	56.6	38.6	74.6	74.4	37.9	
Image-level app	roaches												
MoCo v2 [†] [9]	800	×	×	40.4	60.1	44.2	36.5	57.2	39.2	76.2	73.7	36.9	
DetCo [†] [73]	200	×	×	40.1	61.0	43.9	36.4	58.0	38.9	76.0	72.6	37.8	
InsLoc [†] [76]	200	1	×	40.9	60.9	44.7	36.8	57.8	39.4	75.4	72.9	37.3	
Pixel-level appro	oaches												
DenseCL [†] [68]	200	×	×	40.3	59.9	44.3	36.4	57.0	39.2	76.2	72.8	38.1	
PixPro [†] [75]	100	×	×	40.7	60.5	44.8	36.8	57.4	39.7	76.8	73.9	38.2	
Object / Group-l	evel appr	oaches											
DetCon [35]	200	×	1	40.6	-	-	36.4	-	-	75.5	72.6	-	
SoCo [‡] [70]	100	1	1	41.6	61.9	45.6	37.4	58.8	40.2	76.5	71.9	37.8	
Ours (SlotCon)	100	×	×	41.4	61.6	45.6	37.2	58.5	39.9	75.4	73.1	38.6	
Ours (SlotCon)	200	X	×	41.8	62.2	45.7	37.8	59.1	40.7	76.3	75.0	38.8	

Ablation study

Table 6: Ablation studies with COCO 800 epochs pre-training. We show the AP^b on COCO objection detection and mIoU on Cityscapes, PASCAL VOC, and ADE20K semantic segmentation. The default options are marked with a gray background.

(a)	Numbe	er of p	rototyp	pes		(b) Loss balancing					(0	c) Teach	er tem	peratu	re
K	COCO	City	VOC	ADE	λ_g	COCO	City	VOC	ADE	au	t	COCO	City	VOC	ADE
128	40.7	76.4	71.9	38.5	0.3	41.0	76.1	72.1	37.9	0	.04	40.4	75.5	70.2	37.9
256	41.0	76.2	71.6	39.0	0.5	41.0	76.2	71.6	39.0	0	.07	41.0	76.2	71.6	39.0
512	40.9	75.6	71.6	38.9	0.7	40.5	75.2	71.5	38.4						
1024	40.7	75.8	70.9	39.1	1.0	40.4	74.2	70.1	38.6						

Understanding the semantic grouping ability: unsupervised semantic segmentation

Table 5: Main results in COCO-Stuff unsupervised semantic segmentation.

Method	mIoU	pAcc
MaskContrast [64]	8.86	23.03
PiCIE + H. [40]	14.36	49.99
SegDiscover [38]	14.34	56.53
Ours (SlotCon)	18.26	42.36

Understanding the semantic grouping ability: nearest neighbor visualization

Figure 3: Examples of visual concepts discovered by SlotCon from the COCO val2017 split. Each column shows the top 5 segments retrieved with the same prototype, marked with reddish masks or arrows. Our method can discover visual concepts across various scenarios and semantic granularities regardless of small object size and occlusion. (*best viewed in color*)

On the emergence of objectness...

- Why the prototypes bind to meaningful concepts?
- We adopts three priors:
 - Prior 1: geometric-covariance and photometric-invariance
 - Prior 2: small prototype number
 - Prior 3: meaningful grouping
 - i.e., avoiding collapse
- Given these constraints, optimize the feature space and the prototypes
- Semantic proto. is the only solution

- Concerning granularity
 - Depend on the prototype number and dataset distribution
- It can bias to occupying categories
 - e.g., the model also discovers human parts and human-related activities
 - While for other animals, one prototype for one general species is enough

Additional ablation studies

Table 8: Ablation studies with COCO 800 epochs pre-training. We show the AP^b on COCO objection detection and mIoU on Cityscapes, PASCAL VOC, and ADE20K semantic segmentation. The default options are marked with a gray background.

	(a) H	Batch	size		(b)	Type of	grou	p-level	loss	(c)	Where to	o appl	y inva	ug?
B	COCO	City	VOC	ADE	Loss	COCO	City	VOC	ADE	Align	COCO	City	VOC	ADE
256	40.6	75.9	70.9	38.1	Reg.	40.7	75.9	71.0	39.0	Proj.	40.9	75.7	71.4	38.0
512	41.0	76.2	71.6	39.0	Ctr.	41.0	76.2	71.6	39.0	Asgn.	41.0	76.2	71.6	39.0
1024	40.7	75.7	71.8	38.6										

(d)	Batch	size	and	image-	level	ob	jective
(-)						~~.	

B	\mathcal{L}_{Image}	COCO AP ^b	$\mathbf{COCO} \ \mathbf{AP}^{\mathbf{m}}$
512	×	41.0	37.0
512	1	40.8	36.8
1024	×	40.7	36.7
1024	1	41.1	37.0

Method	Geometric aug.	VOC mIoU
Random init.	-	39.5
SlotCon	\checkmark	71.6
SlotCon	X	62.6

(e) Geometric augmentations

Additional visualization results: human-related

Pre-training with autonomous driving data?

Table 7: Transfer learning results with BDD100K pre-training.

Pre-train Data	Method	Cityscapes mIoU
-	Random init.	65.3
COCO	MoCo v2	73.8
COCO	SlotCon	76.2
BDD100K	SlotCon	73.9

Table 1: Overview of the training datasets. We sample a uniform and long-tailed (LT) subset of 118K images from ImageNet. On OpenImages, we sample a random subset of 118K images. The complete train splits are

used for COCO and BDD100K. The figure shows some examples.

Pretrain Data	#Imgs	#Obj/Img	Uniform	Discriminative
ImageNet-118K [12]	118 K	1.7	\checkmark	\checkmark
ImageNet-118K-LT [12]	118 K	1.7	×	\checkmark
COCO [31]	118 K	7.3	×	\checkmark
OpenImages-118K [28]	118 K	8.4	X	\checkmark
BDD100K [52]	90 K	-	X	×

• Setting

• Train on BDD100K, then transfer to Cityscapes

• Results

 \bigcirc

- Not as good as COCO-pre-train
- Yet still beats MoCo v2

BDD100K is long-tailed, and the images are also less discriminative

Object-centric pre-training on such data is still challenging for us

Statistics about the slots

- How many slots are active on average for each image?
 - Roughly, 7 slots are active on average for one image after convergence.
- How often is one slot active over the whole dataset?
 - Top 5: tree (376), sky (337), streetside car (327), building exterior wall (313), and indoor wall (307)
 - Bottom 5: skateboarder (44), grassland (45), train (56), luggage (57), and airplane (57)

Figure 4: Average number of active slots per image during training on COCO.

Summary

- 1. We show that the decomposition of natural scenes (semantic grouping) can be done in a learnable fashion and jointly optimized with the representations from scratch.
- 2. We demonstrate that semantic grouping can bring object-centric representation learning to large-scale real-world scenarios.
- 3. Combining semantic grouping and representation learning, we unleash the potential of scene-centric pre-training, largely close its gap with object-centric pre-training and achieve state-of-the-art results in various downstream tasks.

Thanks!

