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Why scene-centric pre-training

e Uncurated, easier data collection, less human labor
o Unlabeled ImageNet is not really unlabeled

e Closer to the downstream data distribution (det & seq)
e More information in one image (multiple objs, complex layout)

Table 1: Overview of the training datasets. We sample a uniform and long-tailed (LT) subset of 118K images
from ImageNet. On Openlmages, we sample a random subset of 118K images. The complete tram splits are
used for COCO and BDD100OK. The figure shows some examples. :

Pretrain Data #Imgs #Obj/Img Uniform Discriminative
ImageNet-118K [12] 118K 1.7 v v
ImageNet-118K-LT [12] 118K 1.7 X v
COCO [31] 118K 7.3 X v
Openlmages-118K [28] 118 K 8.4 X v
BDDI100K [52] 90 K = X X

Van Gansbeke, Wouter, et al., Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations, NeurlPS 2021.



Scene-centric pre-training requires more than
instance discrimination

Consistency Consistency

Image

Views Feature map Views Feature map

Seems good for object-centric images Scene-centric images should not be
simply treated as a single feature vector!



Image-level, pixel-level, and object-level contrastive learning
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Fantastic objects and where to find them (without supervision)?
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Heuristic segmentation methods
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On object discovery: the Slot Attention mechanism

Slot attention introduces competing between queries

e AT TERTIBA: # simplified slot attention module
Py — slots = slots_mu + exp(slots_log_sigma)*normal([N, num_slots, slot_size])
FOR INPUT KEYS i v v inputs = LayerNorm(inputs)

for t in range(T) # Loop == multi-layer with weight-shaying
attn = Softmax(dot(k(inputs), q(slots).T), axis='slots')
slots = WeightedMean(weights=attn + 1le-6, values=v(inputs))
slots += MLP(LayerNorm(slots))

# simplified transformer decoder Layer

slots += LayerNorm(self attn(slots, slots, slots)) # self-attention
FEATURE MAPS —

+ POSITION EMB.

attn = Softmax(dot(k(inputs), q(slots).T), axis='inputs') # cross-attention
slots = WeightedSum(weights=attn + le-6, values=v(infuts))
slots += LayerNorm(slots)

(a) Slot Attention module.

slots += LayerNorm(MLP(slots))
return slots

/
Transformer decoders’ queries are independent to each other

Locatello, Francesco, et al., Object-Centric Learning with Slot Attention, NeurlPS 2020.



Slot Attention works well on toy data with reconstruction...
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(a) Decomposition across datasets.

Locatello, Francesco, et al., Object-Centric Learning with Slot Attention, NeurlPS 2020.
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And also on real-world data if motion or depth is available...
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SAVi++
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slots )
decoder Emergent segmentation

[1] Yang, Charig, et al., Self-Supervised Video Object Segmentation by Motion Grouping, ICCV 2021.
[2] Elsayed, Gamaleldin F., et al., SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos, NeurlPS 2022



And..., what about real-world images?

e No “cheating” cues like motion or depth

e Reconstruction-based paradigm no longer work

o Though it worked well on toy data
o Thetraining cost is also not acceptable

e Contrastive learning faces ambiguity in the learning objective
o The key is to define an objective that forces the emergence of objectness
o Matching the slots procured from two views is hard
m Since the representations are premature
o The best we reached in this path is a good foreground-background

discriminator (by the end of my undergrad thesis)
slot 0 slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7




Philosophy shift: from bottom-up to top-down

Bottom-up object discovery

@)

Objects are directly induced from a
single image
The cues for objectness are mostly
low-level
m E.g., motion, depth,
reconstruction
Do not generalize to the real-world
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Top-down (semantic) object discovery

First learn semantic prototypes from
the whole dataset

m Each prototype can represent a

semantic class (e.qg., cat, dog)

Then assign a nearest-neighbor
prototype to each pixel
(pseudo-labeling)
Pixels with the same pseudo-label
forms a group (object)
The cues for objectness comes from
high-level semantics



Towards semantic prototypes: deep clustering
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[1] Caron, Mathilde, et al, Deep Clustering for Unsupervised Learning of Visual Features, ECCV 2018.

[2] Caron, Mathilde, et al, Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, NeurlPS 2020.

[3] Caron, Mathilde, et al. Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021.

Key insight
o  Two augmented views of the
same image should have the
same cluster assignments
(soft pseudo-labels)
Key problem
o Pseudo-labeling
m K-means
m  Sinkhorn-Knopp
m Self-distillation
o Avoiding collapse
m Stop-gradient
m Centering & sharpening
on the predictions



Deep clustering on pixels: unsupervised semantic seg.
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Semantic grouping with pixel-level deep clustering

Overlapping region

e Intuition: A semantic meaningful
grouping should be invariant to data
augmentations

Inverse Augmentation
(RolAlign + Flip)

e Consistency: Pixels that lie in the
same location should have similar
assignment scores w.r.t. the same set
of cluster centers (prototypes)

e Avoid trivial solution: The prototypes
should be different from each other to &
ensure that the learned
representations are discriminative

Inverse Augmentation
(RolAlign)

Assignment

Overlapping region



Group-level representation learning by contrasting slots

MoCo v3-like contrastive learning
objective applied to slots/groups

Predictor

Pull force: Maximize the similarity
between different views of the
same slot

View 1 ¢!

View 2 '(;2

Push force: Minimize the similarity
between slots from another view
with different semantics and all
slots from other images.
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Together: solving segmentation & representation jointly

Inverse Augmentation
(RolAlign + Flip)
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e Based on a shared pixel embedding function, the model learns to classify pixels into groups according to their feature

similarity in a pixel-level deep clustering fashion.
e The model produces group-level feature vectors (slots) through attentive pooling over the feature maps, and further

performs group-level contrastive learning.



Results: new SOTA in scene-centric pre-training

Table 2: Main transfer results with COCO pre-training. We report the results in COCO [48] object
detection, COCO instance segmentation, and semantic segmentation in Cityscapes [13], PASCAL
VOC [20] and ADE20K [86]. Compared with other image-, pixel-, and object-level self-supervised
learning methods, our method shows consistent improvements over different tasks without leveraging
multi-crop [6] and objectness priors. (f: re-impl. w/ official weights; %: full re-impl.)

Multi Obj. COCO detection COCO segmentation Semantic seg. (mloU)
crop  PHior,pb Apb, AP, AP™ AP, APE City. VOC ADE
random init. - X X 328 509 353 299 479 320 653 395 294

Image-level approaches
MoCo v2* [9] 800 X X 385 58.1 421 348 553 373 738 692 36.2
Revisit." [63] 800 v X 40.1 60.2 436 363 573 389 753 706 370

Pixel-level approaches
Self-EMD [49] 800 X 39.3 60.1 42.8

X . s s g . <
DenseCL' [68] 800 X X 396 593 433 357 565 384 758 716 371
PixPro* [75] 800 X X 405 60.5 44.0 36.6 578 390 752 72.0 383

Object / Group-level approaches
DetCon' [35] 1000 X v 398 59.5 435 359 564 387 761 702 38.1

ORL' [74] 800 v v 403 602 444 363 573 389 756 709 36.7
Ours (SlotCon) 800 X X 410 611 450 370 583 398 762 716 39.0

Method Epochs




Eqv. Performance to ImageNet with ’ data

Table 3: Pushing the limit of scene-centric pre-training. Our method further sees a notable gain in
all tasks with extended COCO+ data, showing the great potential of scene-centric pre-training.

Method Dataset  Epochs COCO detection COCO segmentation  Semantic seg. (mloU)
AP® AP}, APS; AP™ APY, APY Cityy VOC ADE
SlotCon COCO 800 410 61.1 450 370 583 398 762 71.6 39.0
SlotCon ImageNet 100 414 616 456 372 585 399 754 731 @ 38.6
SlotCon ImageNet 200 418 622 457 378 59.1 40.7 763 750  38.8
ORL [74] COCO+ 800 40.6 60.8 445 367 579 393 - - -
SlotCon COCO+ 800 418 622 458 378 594 406 765 739 39.2

Table 1: Details of the datasets used for pre-training.

Dateset #lmg. #Obj./Img. #Class
ImageNet-1K [15] 1.28M 1.7 1000
COCO [48] 118K 7.3 80
COCO+ [48] 241K N/A N/A




Also strong compatibility in object-centric pre-training

Table 4: Main transfer results with ImageNet-1K pre-training. Our method is also compatible with
object-centric data and shows consistent improvements over different tasks without using FPN [47]
and objectness priors. (f: re-impl. w/ official weights; f: full re-impl.)

w/  Obj. COCO detection COCO segmentation Semantic seg. (mloU)

Method Epochs .
FPN P
HOT AP® AP®, APY, AP™ APY, APY City VOC ADE
random init. : X X 328 509 353 299 479 320 653 395 294
supervised 100 X X 397 595 433 359 566 386 746 744 379

Image-level approaches

MoCo v21 [9] 800 X X 404 60.1 442 365 572 392 762 737 369
DetCo' [73] 200 X X 40.1 610 439 364 580 389 760 726 378
InsLoc! [76] 200 v X 409 609 447 368 578 394 754 729 373
Pixel-level approaches

DenseCL' [68] 200 X X 403 599 443 364 570 392 762 728 381
PixPro' [75] 100 X X 407 605 448 368 574 397 768 739 382
Object / Group-level approaches

DetCon [35] 200 X v 406 - - 36.4 - - 75.5 726 -
SoCo' [70] 100 v v 416 619 456 374 588 402 765 719 378
Ours (SlotCon) 100 X X 414 616 456 372 585 399 754 731 386
Ours (SlotCon) 200 X X 418 622 457 378 591 40.7 763 750 388




Ablation study

Table 6: Ablation studies with COCO 800 epochs pre-training. We show the AP® on COCO
objection detection and mIoU on Cityscapes, PASCAL VOC, and ADE20K semantic segmentation.
The default options are marked with a gray background.

(a) Number of prototypes

(b) Loss balancing

(c) Teacher temperature

K COCO City VOC ADE A, COCO City VOC ADE 1 COCO City VOC ADE
128  40.7 764 71.9 38.5 03 410 76.1 721 379 0.04 404 755 702 379
256 410 762 71.6 390 05 410 762 71.6 39.0 007 41.0 76.2 71.6 39.0
512 409 756 716 389 0.7 405 752 715 384
1024 40.7 75.8 70.9 39.1 1.0 404 742 70.1 38.6



Understanding the semantic grouping ability:
unsupervised semantic segmentation

Table 5: Main results in COCO-Stuff
unsupervised semantic segmentation.

Method mloU pAcc

MaskContrast [64] 8.86  23.03
PiCIE + H. [40] 1436 49.99
SegDiscover [38] 14.34 56.53
Ours (SlotCon) 18.26 42.36




Understanding the semantic grouping ability:
nearest neighbor visualization

Figure 3: Examples of visual concepts discovered by SlotCon from the COCO val2017 split.
Each column shows the top 5 segments retrieved with the same prototype, marked with reddish
masks or arrows. Our method can discover visual concepts across various scenarios and semantic
granularities regardless of small object size and occlusion. (best viewed in color)



On the emergence of objectness...

e Why the prototypes bind to o
meaningful concepts?

e We adopts three priors:
o  Prior 1: geometric-covariance and
photometric-invariance
o  Prior 2: small prototype number
Prior 3: meaningful grouping
m i.e, avoiding collapse
e Given these constraints, optimize the
feature space and the prototypes

e Semantic proto. is the only solution

Concerning granularity

(@)

Depend on the prototype number and
dataset distribution

It can bias to occupying categories

(@)

e.g., the model also discovers
human parts and human-related
activities

While for other animals, one
prototype for one general species is
enough



Additional ablation studies

Table 8: Ablation studies with COCO 800 epochs pre-training. We show the AP® on COCO
objection detection and mloU on Cityscapes, PASCAL VOC, and ADE20K semantic segmentation.
The default options are marked with a gray background.

(a) Batch size (b) Type of group-level loss (c) Where to apply invaug?
B COCO City VOC ADE Loss COCO City VOC ADE Align COCO City VOC ADE

256 40.6 759 709 38.1 Reg. 40.7 759 71.0 39.0 Proj. 409 75.7 714 38.0
512 41.0 762 71.6 390 Ctr. 410 762 71.6 39.0 Asgn. 41.0 76.2 71.6 39.0
1024 40.7 75.7 71.8 38.6

(d) Batch size and image-level objective (e) Geometric augmentations
B Limge COCO AP’ COCO AP™ Method Geometric aug. VOC mIoU
512 X 41.0 37.0 Random init. - 39.5
512 ve 40.8 36.8 SlotCon v 71.6
1024 X 40.7 36.7 SlotCon X 62.6

1024 41.1 37.0



Additional visualization results: human-related




Pre-training with autonomous driving data?

Table 7: Transfer learning results with BDD100OK pre-training. o Setti ng
o Train on BDD100K, then transfer to
Pre-train Data Method Cityscapes mloU Cityscapes
- Random init. 65.3
()
COCO MoCo v2 73.8 Results )
COCO SlotCon 76.2 o Not as good as COCO-pre-train
BDD100K SlotCon 73.9 o Yet still beats MoCo v2

@)
Table 1: Overview of the training datasets. We sample a uniform and long-tailed (LT) subset of 118K images
from ImageNet. On Openlmages, we sample a random subset of 118K i 1mages The complete tram splits are
used for COCO and BDD100K. The figure shows some examples. “in 0

Pretrain Data #Imgs #Obj/Img Uniform Discriminative
ImageNet-118K [12] 118 K 1.7 v
ImageNet-118K-LT [12] 118 K 1.7
COCO [31] 118K 73
Openlmages-118K [28] 118 K 84
BDD100K [52] 90 K -

*xX X X X
SIRNENENEN

BDD100K is long-tailed, and the
images are also less discriminative

Object-centric pre-training on such
data is still challenging for us



Statistics about the slots

e How many slots are active on
average for each image?

(@)

Roughly, 7 slots are active on average
for one image after convergence.

e How often is one slot active over
the whole dataset?

(@)

Top 5: tree (376), sky (337), streetside
car (327), building exterior wall (313),
and indoor wall (307)

Bottom 5: skateboarder (44), grassland
(45), train (56), luggage (57), and
airplane (57)
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Figure 4: Average number of active slots
per image during training on COCO.



Summary

2.

We show that the decomposition of natural scenes (semantic grouping) can
be done in a learnable fashion and jointly optimized with the representations
from scratch.

We demonstrate that semantic grouping can bring object-centric
representation learning to large-scale real-world scenarios.

Combining semantic grouping and representation learning, we unleash the
potential of scene-centric pre-training, largely close its gap with object-centric
pre-training and achieve state-of-the-art results in various downstream tasks.
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