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Generalized Category Discovery aims to 
recognise novel categories from unlabelled data 
using knowledge learned from labelled samples.
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Introduction
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Overview of current works:
current SOTA is still semi-supervised k-means, 
and we target on parametric classification.



Prior parametric SOTA (UNO+) suffers from 
over-fitting to seen (‘Old’) categories.
But why?
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On the Failure of Parametric 
Classification
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Investigating into the failures of parametric cls.
We validate the performance of different design 
choices under varying supervision qualities.

Representation Learning

● Follows GCD
● Supervised contrastive learning
● Self-Supervised contrastive learning
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Classifier

● Prototypical classifier

Training Settings

● Cross-entropy loss for classification
● Decouple classification from 

representation learning

Varied Supervision Quality

● Minimal (lower bound setting)
● Pseudo-labelling on unlabelled samples

○ With different pseudo-labelling strategies
○ i.e.,  self-labelling and self-distillation

● Oracle (upper bound setting)



Which feature space to build your classifier?
The post-backbone representations consistently 
benefit classification performance.
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Decoupled or joint representation learning?
Guiding rep. learning with cls. objective can be 
helpful, only when high-quality sup. is available.
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So what’s wrong with UNO+’s pseudo labels?
The devil is in the biased predictions.
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SimGCD:
Our Simple Yet Strong Solution
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We present a simple yet effective
pseudo-labelling replacement that features 
self-distillation and entropy regularisation.
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Supervised
Contrastive Learning:

Self-Supervised
Contrastive Learning:

Supervised
Classification Objective:

Self-Supervised
Classification Objective:

Average Predictions:

Entropy



Main Experiments
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Our experiments cover all current GCD 
benchmarks that are coarse/fine-grained, 
balanced/long-tailed, or small/large-scale.
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SimGCD reaches state-of-the-art performance 
on all benchmarks: fine-grained classification
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SimGCD reaches state-of-the-art performance 
on all benchmarks: generic object recognition
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SimGCD reaches state-of-the-art performance 
on all benchmarks: more challenging datasets
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Also, notably faster inference since time for 
semi-supervised k-means is reduced.
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Analytical Experiments
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Step-by-step ablation study (GCD→SimGCD) 
shows consistent benefit from gradually 
stronger pseudo-labels.
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SL: self-labelling, BR: post-backbone representation

SD: self-distillation, TW: teacher temperature warm-up, JT: joint training



Entropy regularisation shows notable benefit in  
alleviating the prediction biases between and 
within seen and novel categories.
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And the benefit is also consistent across multiple datasets.
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Take a closer look!

23

Though the regulariser enforces 
uniform predictions…

On class-balanced ImageNet-100:

Over-regularisation could make 
the predictions more biased.

On long-tailed Herbarium 19:

Such regularisation could also 
help fit long-tailed distribution.



Entropy regularisation also enforces robustness to 
unknown class numbers, but over-regularisation could 
harm recognising ‘New’ classes under GT class numbers.
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What makes for 
such robustness?
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Our method identifies the 
criterion for ‘New’ classes, thus 
keeping the number of active 
prototypes close to the 
ground-truth class number.

A loose K greater than the 
ground truth may harm fitting the 
class-balanced ImageNet-100, 
but can help fit the long-tailed 
Herbarium 19.



Jointly supervising representation learning with a 
classification objective helps disambiguate (e.g., 
bed & table) and forms compacter clusters.
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Limitations And Future Works
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Representation 
Learning for An 

Open World
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Neural nets always spare no effort to find a 
short cut, thus representations induced by 
closed-set classifiers easily bias to those 
predefined classes, and novel classes 
could be hard to recognise.

Possible solutions:

● Use more generalizable features
○ E.g., self-supervised learning

● Use weaker classification supervision
○ E.g., SupCL rather than CE
○ Or even decouple cls. from rep.

● Use regularisation terms
○ To penalise possible biases

● Keep in mind there are sth. out there
○ E.g., use auxiliary prototypes

● Make the class set big enough
○ Thus evth. is in this closed set

Could the features induced by a 
cat/dog classifier recognise 

table/bed, husky/beagle, 
or vise-versa?



Alignment to 
Human-Defined 

Categories
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In GCD, human labels in seen categories 
implicitly define the metric for unseen 
ones. E.g., cat/dog labels helps 
distinguish tiger/bear.

But what if seen/novel categories are of 
different granularities, in different 
domains, or the class set is so big and 
categories overlap with each other (e.g., 
ImageNet-22K)?

Further, could we drop the matching 
process between discovered clusters 
and text class names, or even directly 
predicting the novel categories in the 
text space? 

Could cat/dog labels help 
recognise table/bed, 

husky/beagle, 
or vise-versa?



Thanks!
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