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1. Setting and Background 2. On the Failure of Parametric Classification | 4- Experiments oAl

SOTA ( t ~10%) over all current GCD benchmarks that are
coarse/fine-grained, balanced/long-tailed, or small/large-scale.

1) Which feature space to build your classifier?
The post-backbone representations consistently benefit
classification performance. Stanford Cars FGVC-Aircraft CIFAR10 CIFAR100 ImageNet-100

Methods All All Old New All Old New Methods All Old New All Old New All Old New

k-means [ ] 34.3 128 106 138 144 16.8 k-means ['°] 83.6 85.7 825 520 522 508 7277 755 713
RS+ [71] 33.3 283 61.8 121 364 22.2 RS+ [71] 468 192 605 582 77.6 193 37.1 61.6 248
UNO+['0]  35.1 355 705 18.6 564 322 UNO+['0] 686 983 538 695 80.6 472 703 95.0 579
ORCA [7] 35.3 23.5 50.1 10.7 31.8 17.1 ORCA [7] 81.8 862 79.6 69.0 774 520 73.5 926 639

GCD [ ] 51.3 39.0 576 299 41.1 46.9 GCD [ ] 915 979 882 730 76.2 66.5 74.1 89.8 66.3
SimGCD 60.3 538 719 45.0 59.1 51.8 SimGCD 971 95.1 98.1 80.1 81.2 778 83.0 931 779
A +9.0 +14.8 +14.3 +15.1 +18.0 +4.9 A +5.6 -28 +99 +7.1 +5.0 +11.3 +89 +3.3 +11.6

Generalized Category Discovery
aims to recognise novel
categories from unlabelled
data using knowledge learned
from labelled samples.
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Overview of current works: SOTA is still semi-supervised k-means.
And we target on parametric classification.

== 0ld (backbone)
=@+ Old (projector)

== 0Id (backbone)
=@ Old (projector)

Entropy regularisation shows notable _ Herbaium19 = ImageNet-IK
Methods All Old New

benefit in alleviating the prediction biases
Minimal  Selflabel  Self-distil Oracle Minimal  Selflabel  Self-distil Oracle k-means [ ] 12.2 13.4 i

Supervision Quality (Low = High) Supervision Quality (Low - High) between/Within Seen/nOvel ClaSSGS RS+ 1] 55.8 12.8 -
UNO+ [ 7] 53.7 14.7 -
ORCA [7] 30.9 15.5 -

GCD [ ] 51.0 27.0 52.5 72.5
SimGCD 58.0 36.4 57.1 77.3
A : +7.0 +9.4 +4.6 +4.8
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Representation Learning Objectives Current Works

Classication—Based Learning Supervised Contrastive Learning Self-Supervised Contrastive Learning RankStat -
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s i - 2) Decoupled or joint representation learning?
“ Guiding rep. learning with cls. objective can be helpful,

T only when high-quality sup. is available. e = e e =
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The model tends to keep the number of active

CIFAR100
prototypes close to the GT class number.
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Prior parametric SOTA
(UNO+) suffers from
over-fitting to seen (‘Old’)
categories.

But why? (GOTO next col.)
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. Entropy regularisation also enforces
3.A Frustratlngly robustness to unknown class numbers, but

Simple Yet Strong over-regularisation could harm recognising | e
Baselin e ‘New' classes under GT class numbers. Sorted Class Indexes o 1000
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3) So what'’s wrong with UNO+'s pseudo labels?
The devil is in the biased predictions. ST e e

— UNO+ —— GCD — GT | [—- uNnO+ == GcD — GT
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CIFAR100 (K=100) ImageNet-100 (K=100) CUB (K=200) Herbarium 19 (K=683)
UNO+ (CIFAR100) UNO+ (CUB) GCD (CIFAR100) GCD (CuB)

2.67% 10.05% o /.48% 6.16% 2.18% pEREPAL
17.77% 24.02% RPN 2.74% 11:83%/20.97%
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Figure 5. Prediction bias between ‘Old’/‘New’ classes. We D
simplify the setting to binary classification and categorise the er-
rors in ‘All” ACC into four types. Both works, especially UNO+,
are prone to make “False Old” predictions. In other words, the
predictions are biased towards ‘Old’ classes, and many samples

corresponding to ‘New’ classes are misclassified as an ‘Old’ class.
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Figure 6. Prediction bias across ‘Old’/*New’ classes. We
show the per-class prediction distributions. Both works, especially
UNO-+, are prone to make long-tailed predictions. In other words,
across all classes, the predictions are unexpectedly long-tailed and
biased towards the head classes.
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Contrastive Learning:




