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1. How Pre-Training Data Affect
Vision Models on Robot Tasks?

PVM: 5 pre-training methods
BEIT, SplitMask, MAE, DINO, and iBOT

Data: 4 pre-training datasets
Ego-Centric, (Single-)Object-Centric,
Scene-Centric, and Web-Crawled data

Eval: 13 behavior cloning tasks
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Franka Kitchen and Meta-World
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BC Success Rte (%)
Ego- 36.6 20.7
Object- 33.8 26.4
Scene- 35.7 34.2
Web - 36.1 30.0 34.6

Avg performance on manipulation tasks.
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DINO/iBOT rival other methods a lot!
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Evaluation Protocol: Behavior cloning with
attentive probing on frozen PVMs.
Report success rate on multiple trials.

2. Objectness Matters
But is hard to obtain on

non-object-centric (NOC) data
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Top: Attention Masks of DINO

Poor objectness on non-object-centric data.
Right: corr. (objectness v.s. performance)
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3. Object-Centric Learning on Non-Object-Centric Data

1) Intuition:
modeling
objectness
explicitly
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Objectness of DINO emerges
internally, which relies on

(Single-)OC data bias.
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(can group tokens to objects)

Our method (SlotMIM) receives explicit
objectness supervision externally.

2) Observation: iBOT (piNo on patches) discovers objects via prototypes

even when trained on NOC data, despite semantically misaligned.
‘i:OC 512)

(a) Clustering assignment of patch tokens. Each
patch 1s assigned to its nearest-neighbor prototype, with
different colors indicating different prototypes.

4. Experiments: SoTA on

Manip., Nav., Det., and Seg.

(b) Top S segments retrieved by the prototypes (by column) A segment consists of patches
assigned to the same prototype within an image. Each column shows the top-5 segments with

| SlotMIM

the highest cosine similarity to the prototype corresponding to the column.

3) Method: DINO loss on image patches within and cross views,

and contrastive learning between (grouped) object-level features.
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Benchmark Suite

RGB Proprio. Physics Action Goal Learning

Franka Kitchen [26] X Continu. — IL
Meta-World [76] v X Continu. - IL
ObjectNav [6] v v Discrete Class IL
ImageNav [81] v X Discrete Image  RL

Tasks: control and perception
Prev. SoTAs: DINO, iBOT, VC-1

Detailed comparisons available
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mask L .eh L;’,";f?ﬂln Lgot k-NN ADE Jacc K
1 X v X X 451 474 425 8.3
2/ v X X 449 486 423 10.3
3 X v X 277 4577 39.3 20.7
4 v v X v 453 475 429 84
5 V/ v v v 462 49.1 439 94

in the paper.

Qualitative Results

SlotMIM
learns
objective-
ness
adaptively.

Scaling Curves (Ctl‘l. & Percept.) highlighting best (model, data)
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Better scaling on NOC data
means 1) less dependence
on data curation, 2) better
scalability, and 3) better data
efficiency.

Future investigations on
scalability could be valuable.



